In seeking precedents for the Ag to Pt metal-metal bonding in this molecule, we have found only two very recently reported possibilities. B. L. Shaw et al. ${ }^{5.6}$ have reported the preparation and structure of $(\mathrm{PhCC})_{2} \mathrm{Pt}(\mu-\mathrm{dppm})_{2} \mathrm{AgI}$, with a $\mathrm{Pt}--\mathrm{Ag}$ distance of 3.146 (3) \AA, which the authors felt ${ }^{5}$ did "not exclude significant bonding interaction". In the case of a trinuclear $\mathrm{Pt}-\mathrm{Ag}-\mathrm{Pt}$ compound the $\mathrm{Pt}-\mathrm{Ag}$ distances of 2.849 (1) and 2.884 (1) \AA were considered by Lippert and Neugebauer" to be "too long to implicate any strong metal-metal bonding...However, some weak metal-metal interaction appears feasible on the basis of Pt and Ag radii". Short, and hence potentially bonding, $\mathrm{Ag}-\mathrm{Ag}$ distances have often been observed, and the range is from 2.740 (2) \AA for a compound in which the silver atoms are bridged by a carbon atom of a ferrocene group ${ }^{8}$ to distances as high as 2.957 (2)-3.085 (2) \AA where an "attractive interaction between the Ag atoms" of an Ag_{8} cube was proposed ${ }^{9}$ and 3.074 (2) \AA in a case where the authors neither proposed nor discounted $\mathrm{Ag}-\mathrm{Ag}$ bonding. ${ }^{10}$

[^0]The other reported $\mathrm{Ag}-\mathrm{Ag}$ distances where bonding is considered to occur range from 2.757 to ca. $3.05 \AA .{ }^{11-19}$ As further points of comparison, the $\mathrm{Ag}-\mathrm{Ag}$ distance in metallic silver ${ }^{20}$ is 2.889 (6) \AA and pertinent sums of Pauling R_{1} radii ${ }^{4}$ are $\mathrm{Ag}-\mathrm{Ag}=2.68$, $\mathrm{Pt}-\mathrm{Pt}=2.60$, and $\mathrm{Ag}-\mathrm{Pt}=2.64$. It may also be noted that the $\mathrm{Ag}-\mathrm{Rh}$ bonds found in $\left\{\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{Rh}\right]_{2} \mathrm{Ag}^{+}\right.$are 2.651 (1) and 2.630 (1) \AA in length. ${ }^{21}$

Studies of the chemical reactivity of this unusual cluster anion are in progress and have revealed, inter alia, that with PPh_{3} a scission occurs to give a $\left[\mathrm{PtAgCl}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{PPh}_{3}\right]^{-}$ion in which, according to an as yet incomplete X-ray study, an $\mathrm{Ag}-\mathrm{Pt}$ bond of length $2.80 \AA$ is retained.

Acknowledgment. We thank the U. S. National Science Foundation and the C.A.Y.C.I.T. (Spain) for support.

Supplementary Material Available: A table of atomic positional parameters (2 pages). Ordering information is given on any current masthead page.
(15) Dietrich, H.; Storck, W.; Manecke, G. J. Chem. Soc., Chem. Commun. 1982, 1036.
(16) Rao, J. K. M.; Viswamitra, M. A. Acta Crystallogr., Sect. B 1972, B28, 1484 .
(17) Coggon, P.; McPhail, A. T. J. Chem. Soc., Chem. Commun. 1972, 91.
(18) Udupa, M. R.; Kregs, B. Inorg. Chim. Acta 1973, 7, 271.
(19) Briant, C. E.; Hor, T. S. A.; Howells, N. D.; Mingos, D. M. P. J. Organomet. Chem. 1983, 256, C15.
(20) Wyckoff, R. W. G. "Crystal Structures", 2nd ed.; Wiley-Interscience: New York, 1963; Vol. 1, p 10. From the unit cell edge, $4.086 \AA$, the internuclear distance of $2.88 \AA$ is calculated.
(21) Connelly, N. G.; Lucy, A. R.; Galas, A. M. R. J. Chem. Soc., Chem. Commun. 1981, 43.

Additions and Corrections

Orthoquinone Complexes of Vanadium and Their Reactions with Molecular Oxygen [J. Am. Chem. Soc. 1983, 105, 2680-2686]. Marion E. Cass, David L. Green, Robert M. Buchanan, and Cortlandt G. Pierpont*

Page 2680: The crystallographic unit cell dimensions in the abstract were presented in incorrect order. The cell constants should read as follows: $a=11.633$ (4) $\AA, \beta=13.102$ (4) \AA, c $=11.486(4) \AA, \alpha=108.81(3)^{\circ}, \beta=97.82(3)^{\circ}$, and $\gamma=100.58$ $(2)^{\circ}$.

Selectivities of π - and σ-Succinimidyl Radicals in Substitution and Addition Reactions. Appendix: Response to Walling, El-Taliawi, and Zhao [J. Am. Chem. Soc. 1983, 105, 5125-5131]. P. S. Skell,* R. L. Tlumak, and S. Seshadri

Page 5127 , column 2, line 9: $k_{10} / k_{7}=6.9$ should be k_{11} / k_{8} $=6.9$.

Metacyclophanes and Related Compounds. 6. Reduction of [2.2]Metaparacyclophanequinone [J. Am. Chem. Soc. 1983, 105, 6650]. Masashi Tashiro,* Keizo Koya, and Takehiko Yamato

Page 6650: This statement " [2.2]metaparacyclophanequinones have not been synthesized previously" is an error. Earlier, Prof. H. A. Stabb et al. have prepared and characterized [2.2]metaparacyclophanequinone, which is published in Tetrahedron Lett. 1979.

Solvolyses of α-Keto Norbornyl Trifluoroacetates and Triflates. Discrete α-Keto Cations vs. σ-Assisted (k_{Δ}) Processes [J. Am. Chem. Soc. 1983, 105, 7123-7129]. Xavier Creary* and Cristina C. Geiger

Reference to related studies on bromocamphor systems a was inadvertently omitted. While our rate and product studies implicated k_{Δ} processes in solvolyses of triflates \mathbf{b}, previous studies on products formed from silver ion promoted reactions of a had also implicated k_{Δ} processes. See: (a) Bëquē, J. P.; Charpen-tier-Morize, M.; Pardo, C.; Sansoulet, J. Tetrahedron 1978, 293-298. (b) Charpentier-Morize, M. G. Prepr., Div. Pet. Chem., Am. Chem. Soc. 1983, 28(2), 297-318.

a

b

Photochemical Transformations. 35. Stereochemistry of Electron Transfer from Photoexcited Aromatic Rings to Carbon-Chlorine Bonds. Syn Sterochemistry of Migration in Photo-WagnerMeerwein Rearrangements [J. Am. Chem. Soc. 1983, 105, 7337-7345]. Stanley J. Crisitol,* Dave G. Seapy, and Ellen O. Aeling

Page 7343, column 1: In lines 22 and 29 2-($2^{\prime}, 3^{\prime}$-dimethoxybenzoyl)benzoic acid should be 2-($3^{\prime}, 4^{\prime}$-dimethoxybenzoyl)benzoic acid. In lines 28,35 , and 412 -($2^{\prime}, 3^{\prime}$-dimethoxybenzyl)benzoic acid should be 2-($3^{\prime}, 4^{\prime}$-dimethoxybenzyl)benzoic acid.

[^0]: (5) McDonald, W. S.; Pringle, P. G.; Shaw, B. L. J. Chem. Soc., Chem. Commun. 1982, 861.
 (6) McEwan, D. M.; Pringle, P. G.; Shaw, B. L. J. Chem. Soc., Chem. Commun. 1982, 1240.
 (7) Lippert, B.; Neugebauer, D. Inorg. Chim. Acta 1980, 46, 171.
 (8) Nesmeyanov, A. N.; Sedova, N. N.; Struchkov, Y. T.; Andrianov, V. G., Stakheeva, E. N.; Sazonova, V. A. J. Organomet. Chem. 1978, 153, 115.
 (9) Birker, P. J. M. W. L.; Vershoor, G. C. J. Chem., Soc., Chem. Commun. 1981, 322.
 (10) Alcock, N. W.; Moore, P.; Lampe, P. A.; Mok, K. F. J. Chem. Soc. Dalton Trans. 1982, 207.
 (11) Hunt, G. W.; Lee, T. C.; Amma, E. L. Inorg. Nucl. Chem. Lett. 1974, 10, 909.
 (12) Baenziger, N. C.; Struss, A. W. Inorg. Chem. 1976, 15, 1807.
 (13) Beesk, W.; Jones, P. G.; Rumpel, H.; Schwarzmann, E.; Sheldrick, G. M. J. Chem. Soc., Chem. Commun. 1981, 664.
 (14) Eastland, G. W.; Mazid, M. A.; Russell, D. R.; Symons, M. C. R. J. Chem. Soc., Dalton Trans. 1980, 1682.

